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Abstract
Although theoretical results have been established re-

garding the utility of pre-emptive scheduling in reducing
average job turn-around time, job suspension/restart is
not much used in practice at supercomputer centers for
parallel job scheduling. A number of questions remain
unanswered regarding the practical utility of pre-emptive
scheduling. We explore this issue through a simulation-
based study, using job logs from a supercomputer center.
We develop a tunable selective-suspension strategy, and
demonstrate its effectiveness. We also present new insights
into the effect of pre-emptive scheduling on different job
classes and address the impact of suspensions on worst-
case slowdown.

1 Introduction
Although theoretical results on the effect of pre-emptive

scheduling strategies in reducing average job turn-around
time have been well established, pre-emptive scheduling
is not currently being used for scheduling parallel jobs at
supercomputer centers. Compared to the large number of
studies that have investigated non-preemptive scheduling
of parallel jobs, little research has been reported on empir-
ical evaluation of preemptive scheduling strategies using
real job logs [1, 2, 10, 7] .

The basic idea behind preemptive scheduling is sim-
ple: if a long running job is temporarily suspended and
a waiting short job is allowed to run to completion first, the
wait time of the short job is significantly decreased, with-
out much fractional increase in the turn-around time of the
long job. Consider a long job with runtime ��� . If after
time t, a short job arrives with runtime ��� . If the short job
were run after completion of the long job, the average job
turnaround time would be �
	���
���	���
�	����������� , or � ��� ��	��������� .
Instead, if the long job were suspended when the short job
arrived, the turnaround times of the short and long jobs
would be ��� and ����� � � ��� respectively, giving an average
of ��� � 	��� . The average turnaround time with suspension
is less if � �! �"�$#&% , i.e. the remaining runtime of the
running job is greater than the runtime of the waiting job.

'
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However, the use of a suspension criterion based sim-
ply on comparison of the remaining runtimes of jobs might
result in starvation. It is desirable that the suspension strat-
egy bring down the average slowdown without increasing
the worst case slowdowns. Even though theoretical re-
sults have established that preemption improves the aver-
age turnaround time, it is important to perform evaluations
of preemptive scheduling schemes using realistic job mixes
derived from actual job logs from supercomputer centers,
to understand the effect of suspension on various categories
of jobs. The primary contributions of this paper are:

( The development of a selective-suspension strategy
for pre-emptive scheduling of parallel jobs

( Characterization of the significant variability in the
average job slowdown for different job categories

( The study of the impact of suspension on the worst
case slowdowns of various categories and develop-
ment of a tunable scheme to improve worst case slow-
downs.

We study the effect of preemption on the performance of
various categories of jobs using a locally developed back-
fill scheduler. The rest of the paper is organized follows.
Section 2 presents some basic background on scheduling
of parallel jobs. Section 3 discusses the workload char-
acterization. In Section 4, a basic preemptive scheduling
scheme is proposed and evaluated. In Section 5, the effect
of the preemption scheme on the worst case slowdowns is
analyzed and a tunable scheme is proposed and evaluated.
In Section 6, the proposed preemption schemes are evalu-
ated under conditions where user estimates of runtime are
inaccurate. In Section 7, we evaluate the impact of job-
suspension overheads on pre-emptive scheduling. Section
8 presents our conclusions.

2 Background and Related Work
Scheduling is usually viewed in terms of a 2D chart with

time along one axis and the number of processors along
the other. Each job can be thought of as a rectangle whose
height is the user estimated run time and width is the num-
ber of processors required. The simplest way to schedule



jobs is to use the First-Come-First-Served (FCFS) policy.
This approach suffers from low system utilization. Back-
filling [8, 9] was proposed to improve the system utilization
and has been implemented in most production schedulers
[6, 13]. Backfilling works by identifying ”holes” in the 2D
chart and moving forward smaller jobs that fit those holes.
There are two common variations to backfilling - conserva-
tive and aggressive. In conservative backfilling, a smaller
job is moved forward in the queue as long as it does not
delay any previously queued job. In aggressive backfilling,
a small job is allowed to leap forward as long as it does not
delay the job at the head of the queue.

Some of the common metrics used to evaluate the
performance of scheduling schemes are the average
turnaround time and the average bounded slowdown. We
use the bounded slowdown for our studies. The bounded
slowdown of a job is defined as follows:

Bounded Slowdown = ��� ��� � � ����� 
 	 ��
 � ��
�� � ������� ��� ���	 ��
 � ��
�� � ������� ��� �
The threshold of 10 seconds is used to limit the influ-

ence of very short jobs on the metric.
Pre-emptive scheduling aims at providing lower de-

lay to short jobs relative to long jobs. Since long jobs
have greater tolerance to delays as compared to short jobs,
our suspension criterion is based on the eXpansion Factor
(XFactor), which increases rapidly for short jobs and grad-
ually for long jobs.

XFactor = ��� ��� � � ����� 
 � � � ����� � ��� ��
�� 	 ����� �� � � ����� � ��� ��
�� 	 �����
Although pre-emptive scheduling is universally used at

the operating system level to multiplex processes on single-
processor systems and shared-memory multi-processors, it
is rarely used in parallel job scheduling. A large number of
studies have addressed the problem of parallel job schedul-
ing (see [5] for a survey of work on this topic), but most of
them address non-preemptive scheduling strategies. Fur-
ther, most of the work on pre-emptive scheduling of paral-
lel jobs considers the jobs to be malleable [3, 10, 12, 14],
i.e. the number of processors used to execute the job is
permitted to vary dynamically over time.

In practice, parallel jobs submitted to supercomputer
centers are generally rigid, i.e. the number of processors
used to execute a job is fixed. Under this scenario, the
various schemes proposed for a malleable job model are
inapplicable. We address pre-emptive scheduling under a
model of rigid jobs, where the pre-emption is “local”, i.e.
the suspended job must be re-started on exactly the same
set of processors on which they were suspended.

In a recent study [2], a pre-emptive scheduling strategy
called the ”Immediate Service (IS)” scheme was evaluated
for shared-memory systems. With this scheme, each ar-
riving job was given an immediate time-slice of 10 min-
utes, by suspending one or more running jobs if needed.
The selection of jobs for suspension was based on their
instantaneous-XFactor, defined as (wait time + total accu-
mulated run time)/ (total accumulated run time). Jobs with
the lowest instantaneous-XFactor were suspended. The IS
strategy was shown to significantly decrease the average
job slowdown for the traces simulated. A potential short-
coming of the IS scheme is that its preemption decisions
are not in any way reflective of the expected runtime of
a job. The IS scheme can be expected to provide signifi-
cant improvement to the slowdown of aborted jobs in the

trace. So it is unclear how much, if any, of the improve-
ment in slowdown was experienced by the jobs that com-
pleted normally - however, no information was provided
on how different job categories were affected. Chiang et
al [1] examine the run-to-completion policy with a sus-
pension policy that allows a job to be suspended at most
once. Both these approaches limit the number of suspen-
sions while we use a more selective approach to control the
rate of suspensions, without limiting the number of times a
job can be suspended. In [10], the design and implementa-
tion of a number of multiprocessor preemptive scheduling
disciplines are discussed. They study the effect of preemp-
tion under the models of rigid, migratable and malleable
jobs. They conclude that the preemption scheme that they
propose may increase the response time for the model of
rigid jobs.

So far, very few simulation based studies have been
done on preemption strategies for clusters. If process mi-
gration is not allowed (due to the significant practical com-
plications it entails), preemptive scheduling on distributed
memory systems imposes an additional constraint that the
suspended jobs should be restarted on the same set of phys-
ical processors. In this paper we propose tunable suspen-
sion strategies for parallel job scheduling in environments
where process migration is not feasible.

3 Workload Characterization
From the collection of workload logs available from

Feitelson’s archive [4], the CTC workload trace was used
to evaluate the proposed schemes. This trace was gener-
ated by a 430 processors system. In order to reduce the
time taken to run the set of simulations, a contiguous 5000
job subset of the trace was used (corresponding to roughly
one month’s jobs).

Under normal load, with the standard non-preemptive
aggressive backfilling strategy, using FCFS as the schedul-
ing priority, the utilization was 51 percent. Although it is
known that user estimates are quite inaccurate in practice,
as explained above, we first studied the effect of preemp-
tive scheduling under the idealized assumption of exact es-
timation, before studying the effect of inaccuracies in user
estimates of job run time. Also, we first studied the impact
of pre-emption under the assumption that the overhead for
the suspension and restart is negligible and then studied the
influence of the overhead.
3.1 Job Classification

Any analysis that is based on the aggregate slowdown
of the system as a whole does not provide insights into
the variability within different job categories. Therefore
in our discussion, we classify the jobs into various cate-
gories based on the runtime and the number of processors
requested, and analyze the slowdown for each category.

To analyze the performance of jobs of different sizes
and lengths, jobs were classified into 16 categories: four
categories based on their run time - Very Short(VS),
Short(S), Long(L) and Very Long(VL) and four categories
based on the number of processors requested - Sequen-
tial(Seq), Narrow(N), Wide(W) and Very Wide(VW). The
criteria used for job classification are shown in Table 1.
Table 2 shows the percentage of jobs in the trace, corre-
sponding to the sixteen categories.

Job Categorization Criteria



1 Proc 2-8Procs 9-32Procs � 32 Procs
0-10min VS Seq VS N VS W VS VW

10min-1hr S Seq S N S W S VW
1hr-8hr L Seq L N L W L VW
� 8hr VL Seq VL N VL W VL VW

Table 1. Categorization of jobs based on their
Runtime and Width.

Job Percentage

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 14 8 13 9

10min-1hr 18 4 6 2
1hr-8hr 6 3 9 2
� 8hr 2 2 1 1

Table 2. Category based Job Distribution.

Average Slowdown for Non Preemptive Scheduling

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 2.6 4.76 13.01 34.07

10min-1hr 1.26 1.76 3.04 7.14
1hr-8hr 1.13 1.43 1.88 1.63
� 8hr 1.03 1.05 1.09 1.15

Table 3. Average slowdown for various cate-
gories with non preemptive scheduling.

Table 3 shows the average slowdowns for the different
job categories under a non-preemptive aggressive back-
filling strategy. The Overall slowdown was 3.58. Even
though the overall slowdown is low, from the table it can
be observed that one of the Very Short categories has aver-
age slowdown as high as 34. Preemptive strategies can be
effective in reducing the high average slowdowns for the
short categories, without significant degradation for long
jobs.

4 Selective Suspension
We first propose a preemptive scheduling scheme,

called the Selective Suspension (SS) scheme, where an idle
job can preempt a running job if its priority is sufficiently
higher than the running job. An idle job attempts to sus-
pend a collection of running jobs so as to obtain enough
free processors. In order to control the rate of suspensions,
a suspension factor (SF) is used. This specifies the mini-
mum ratio of the suspension threshold of a candidate idle
job to the suspension threshold of a running job for pre-
emption to occur. The suspension threshold used is the
XFactor of the job.

4.1 Theoretical Analysis
Let � � and � � be two tasks submitted to the scheduler

at the same time. Both tasks are of same length and re-
quire the entire system for execution and the system is free
when the two tasks are submitted. Let ’s’ be the suspen-
sion factor. Before starting, both tasks have a suspension
threshold of 1. The suspension threshold of a task remains
constant when the task executes and increases when the
task waits. One of the two tasks, say � � , will be started
instantaneously. The other task, say � � , waits until its sus-
pension threshold � � becomes ’s’ times the threshold of � �
before it can preempt � � . Now � � waits until its suspension
threshold � � becomes ’s’ times � � before it can preempt � � .
This occurs repeatedly. The optimal value for SF to restrict
the number of repeated suspensions by two similar tasks
arriving at the same time can be obtained as follows:

Let ��� represent the suspension threshold of the wait-
ing job and ��� represent the suspension threshold of the
running job.

Condition for the first suspension: � � = s
The preemption swaps the running job and the waiting

job. So after the preemption, � � = 1 and � � = s.
Condition for second suspension: � � = � � � � i.e. � � =

�
�

Similarly, the condition for � � � suspension is � � = �
�

.
The lowest value of s for which at most n suspensions

occur is given by,
��� = �

� 
 � , when the running job completes.
When the running job completes,
��� = � ��� � � ����� 
 � 
�� � �����

� 
�� � ����� i.e ��� = 2 ; since the wait time
of the waiting job equals the run time of the running job

�
� 
 � = 2, i.e. s = 	


��� 

Thus, if the number of suspensions has to be 0, then s

= 2. For at most 1 suspension, we get s as


	 . With s=1,

the number of suspensions is very large, only bounded by
the granularity of the preemption routine. With all jobs
having equal length, any suspension factor greater than 2
will not result in any suspension and will be same as the
suspension factor 2. However, with jobs of varying length,
the number of suspensions reduces with higher suspension
factors. Thus, in order to avoid thrashing and to reduce the
number of suspensions, we use different suspension factors
between 1.5 and 5 in evaluating our schemes.
4.2 Preventing Starvation without Reservation

Guarantees
An idle job can preempt a running job only if its thresh-

old is at least SF times greater than the threshold of the run-
ning job. All the idle jobs that are able to find the required
number of processors by suspending lower threshold run-
ning jobs are selected for execution by preempting the cor-
responding jobs. All backfill scheduling schemes use job
reservations for one or more jobs at the head of the idle
queue as a means of guaranteeing finite progress, thereby
assuring freedom from starvation. But the start time guar-
antees do not make much sense in the presence of preemp-
tion. Even if start time guarantees are given to the jobs in
the idle queue, they are not guaranteed to run to comple-
tion since they can be suspended. However, because the
SS strategy uses the expected slowdown as the suspension
threshold, there is an automatic guarantee of freedom from
starvation - ultimately any job’s expected slowdown factor



will get large enough that it will be able to preempt some
running job and begin execution. Therefore, it is possible
to run the backfill algorithm without the usual reservation
guarantees. So, we remove the guarantees for all our pre-
emption schemes, since the absence of reservations in the
schedule facilitates better backfilling..

Further, jobs in some categories inherently have a
higher probability of waiting longer in the queue than a
job with comparable XFactor from another job category.
For example, consider a VW job needing 300 processors,
and a Seq job in the queue at the same time. If both jobs
have the same XFactor, the probability that the Seq finds a
running job to suspend is higher than the probability that
the VW job finds enough lower threshold running jobs to
suspend. Therefore, the average slowdown of the VW cat-
egory will tend to be higher than the Seq category. To re-
dress this inequity, we impose a restriction that the number
of processors requested by a suspending job should be at
least half of the number of nodes requested by the job that
it suspends, thereby preventing the wide jobs from being
suspended by the narrow jobs. The scheduler periodically
(after every minute) invokes the preemption routine.
4.3 Algorithm

Let � � be suspension threshold for a task � � which re-
quests � � processors. Let � � represent the set of processors
allocated to � � . Let � � represent the set of free processors
and � � represent the number of free processors at time ’t’
when the preemption is attempted.

Let candidates( � � ) represent the set of tasks that can be
preempted by task � � .

candidates( � � ) = � ��� : � � � SF * ��� and
����
	  2 �

� � can be scheduled by preempting one or more tasks in
candidates( � � ) if and only if

� �
� ( � � � + � � ) � � ��� candidates( � � )
If � � is itself a previously suspended task attempting

reentry, the processor restriction also applies. So the above
condition becomes:

candidates( � � ) = � ��� : � � � SF* ��� and
���
�
	  2 and

� ��� � ������ �� � can be scheduled by preempting one or more tasks in
candidates( � � ) if and only if

� �
� ( � � � + � � ) � � ��� candidates( � � )
and
� ��� � ��� � � � � ��� candidates( � � )
For both of the above scenarios, � � preempts tasks in

candidates( � � ) as given by the following condition:
The set of tasks suspended by � � is

P = � ��� : ��� � candidates( � � ) and � � � � � � � ����� and ( � �� ( � �� �� �! � P) - ( � �#" � � � P))  � �
In essence, the algorithm sorts the list of running jobs

in ascending order of the suspension threshold and the list
of idle jobs in descending order of suspension threshold.
Then for each idle job, a minimal set of running jobs which
satisfy the following conditions are chosen for suspension.

( The number of processors used by the running job is
less than twice the number of processors requested by
the idle job.

( The suspension threshold of the idle job is atleast SF
times the suspension threshold of the running job.

( The sum of processors of all the running jobs in the
minimal set, together with the number of free pro-
cessors in the system at that instant is greater than or
equal to the number of processors requested by the
idle job.

4.4 Results
We compare the SS scheme run under various suspen-

sion factors with the No-Suspension(NS) scheme with ag-
gressive Backfilling and the IS scheme. From Figure 1,
we can see that the SS scheme provides significant im-
provement for the Very-Short(VS) and Short(S) length cat-
egories and Wide(W) and Very-Wide(VW) width cate-
gories. For example, for the VS-VW category, slowdown
is reduced from 34 for the NS scheme to under 3 for SS
with SF=2. For VS and S length categories, lower SF re-
sults in lower slowdown. This is because a lower SF in-
creases the probability that a job in these categories will
suspend a job in the Long(L) or Very-Long(VL) category.
The same is also true for the L length category, but the
effect of change in SF is less pronounced. For the VL
length category, there is an opposite trend with decreasing
SF, i.e. the slowdown increases. This is due to the increas-
ing probability that a Long job will be suspended by a job
in a shorter category as SF decreases. In comparison to the
base No-Suspension(NS) scheme, the SS scheme provides
significant benefits for VS and S categories, a slight im-
provement for most of the Long categories, but is slightly
worse for the VL categories.

The performance of the IS scheme is very good for the
VS category. It is better than the SS scheme for the VS
length category and worse for the other categories. Even
though the overall slowdown for IS is considerably less
than the No-Suspension scheme, it is not better than SS.
Moreover, in IS the VW and VL categories get signifi-
cantly worse.

5 Tunable Selective Suspension (TSS)
From the graphs of the previous section, it can be ob-

served that the SS scheme significantly improves the aver-
age slowdown of various job categories. But from a prac-
tical point of view, the worst case slowdowns are very im-
portant. A scheme that improves the average case slow-
downs for most of the categories, but makes the worst case
slowdown for the long categories worse, is not a desirable
scheme. For example, a delay of 1 hour for a 10 minute job
(slowdown = 7) is tolerable whereas a slowdown of 7 for a
24 hour job is unacceptable.

In Figure 2, we compare the worst case slowdowns for
SF=2 with the worst case slowdowns of the NS scheme
and the IS scheme. It can be observed that the worst case
slowdown for the SS scheme is much better than the NS
scheme for most of the cases. But the worst case slow-
down for some of the long categories is higher than the NS
scheme. Even though the worst case slowdown for SS is
less than that of NS, the worst case slowdowns are much
higher than the corresponding actegory averages for some
of the short categories. For the IS scheme, the worst case
slowdown for the very short categories is lower but much
higher for the long categories, which is highly undesirable.
We next propose a tunable scheme to improve the worst
case slowdowns without losing the improvement in the av-
erage slowdowns. This is done by controlling the variance
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Figure 1. Comparison of the average slowdown of the SS Scheme with the NS and IS Schemes. Compared
to NS, SS provides significant benefit for the VS, S, W and VW categories, slight improvement for most of
L categories, but a slight deterioration for the VL categories. Compared to IS, SS performs better for all the
categories except for the VS categories.
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Figure 2. Comparison of the Worstcase Slowdowns of the SS Scheme with the NS and IS Schemes. SS
is much better than NS for most of the categories and is slightly worse for some of the VL categories.
Compared to IS, SS is much better for all the categories except for the VS categories.



 

Very Short
135.48 291.51 746.1592.74

0

5

10

15

20

25

30

35

40

Seq Narrow Wide Very Wide

Width

W
o

rs
t 

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

Very Long

26.6527.58

0
1
2
3
4
5
6
7
8
9

10

Seq Narrow Wide Very Wide

Width

W
o

rs
t 

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

 Short
757.641.9141.4

0

5

10

15

20

25

30

35

40

Seq Narrow Wide Very Wide

Width

W
o

rs
t 

ca
se

 S
lo

w
d

o
w

n SF = 2

Tuned

No Suspension

IS

Long

96.693.4931.7235.59

0
1
2

3
4
5
6
7

8
9

10

Seq Narrow Wide Very Wide

Width

W
o

rs
t 

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

Figure 3. Comparison of the Worstcase Slowdowns of the TSS Scheme with SS, NS and IS Schemes. TSS
improves the worstcase slowdown for the VL categories and some of the S categories without adversely
affecting the other categories.

in the slowdowns by associating a limit with each job. Pre-
emption of a job is disabled when its threshold exceeds this
limit. This limit is set to 1.5 times the average slowdown
of the category that the job belongs to.
5.1 Control of Variance

Task � � preempts tasks in candidates( � � ) as given by the
following condition:

The set of tasks suspended by � � is
P = � � � : � � � candidates( � � ) and � � � � � � � � � and � � � 1.5
*
��� ����� (category( � � )) � and ( � � � ( � �  �"�  �� P) - ( � � "
� � � P))  � �

where
��� ����� (category( ��� )) represents the average

slowdown in the SS scheme for the job category to which� � belongs.
5.2 Results

Figure 3 shows the results for the tunable suspension
scheme. It improves the worst case slowdowns for some
long categories (VL W, VL VW, L N) and some short cat-
egories (VS Seq, VS N, S Seq) without affecting the worst
case slowdowns of the other categories. This scheme can
also be applied to selectively tune the slowdowns for par-
ticular categories.

6 Inaccurate User Estimates
We have so far assumed that the user estimates of job

runtime are perfect. Now, we consider the effect of user
estimate inaccuracy on the proposed schemes. This is de-
sirable from the point of view of realistic modeling of an
actual system workload. In practice, the scheduler only has
information about the job wallclock limit specified by the
user, and not the actual execution time. Hence it is im-
portant to carry out simulations where the scheduler bases
its decisions on the user specified wallclock limit, which

can often be quite inaccurate. Most simulation based stud-
ies of job scheduling have done this, but we believe that
there is a problem that has not been recognized by previ-
ous studies. Abnormally aborted jobs tend to excessively
skew the average slowdown of jobs in a workload. Con-
sider a job requesting a wall-clock limit of 24 hours, that is
queued for 1 hour, and then aborts within one minute due
to some fatal exception. The slowdown of this job would
be computed to be 60, whereas the average slowdown of
normally completing long jobs is typically under 2. If even
5% of the jobs have a high slowdown of 60, while 95% of
the normally completing jobs have a slowdown of 2, the
average slowdown over all jobs would be around 5. Now
consider a scheme such as the speculative backfilling strat-
egy evaluated in [11]. With this scheme, a job is given a
free timeslot to execute in, even if that slot is considerably
smaller than the requested wall-clock limit. Aborting jobs
will quickly terminate, and since they did not have to be
queued till an adequately long window was available, their
slowdown would decrease dramatically with the specula-
tive backfilling scheme. As a result, the average slowdown
of the entire trace would now be close to 2, assuming that
the slowdown of the normally completing jobs does not
change significantly. A comparison of the average slow-
downs would seem to indicate that the speculative backfill
scheme results in a significant improvement in job slow-
down from 5 to 2. However, under the above scenario, the
change is only due to the small fraction of aborted jobs,
and not due to any benefits to the normal jobs. In order to
avoid this problem, we group the jobs into two different es-
timation categories. The jobs that are well-estimated (the
estimated time is not more than twice the actual runtime of
that job) and badly estimated jobs (the estimated runtime
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Figure 4. Comparison of the Average Slowdown of the TSS Scheme with NS and IS Schemes with inac-
curate user esitmates of runtime. Similar trends as are observed here as for the case with accurate user
estimates.
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Figure 5. Comparison of the Average Slowdown of the TSS Scheme with NS and IS Schemes for the
Well-estimated Jobs. The trends are similar to that of the accurate user estimate case for the S, L and VL
categories. The performance of the SS scheme for the VS categories is better or comparable to that of the
IS scheme.
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Figure 6. Comparison of the Average Slowdown of the TSS Scheme with NS and IS Schemes for the
Poorly-estimated Jobs. The trends are similar to that of the accurate user estimate case for the S, L and VL
categories. The SS scheme tends to penalize very poorly estimated jobs that belong to the VS category.
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Figure 7. Comparison of the Average Slowdown of the TSS scheme with IS and NS schemes, with mod-
eling of overhead for suspending/restarting a job. The performance of the TSS scheme with modeling of
overhead is comparable to its performance in the absence of overhead.



is more than twice the actual runtime). Within each group,
the jobs are further classified into the 16 categories based
on their actual run time and the number of processors re-
quested.

It can be observed from Figure 4 that the Selective Sus-
pension Scheme improves the slowdowns for most of the
categories without affecting the other categories. The slow-
downs for the short and wide categories are quite high com-
pared to the other categories and this is mainly because of
the over estimation. Since the suspension threshold used
by the SS scheme is xfactor, it favors the short jobs. But
if a short job was badly estimated, it would be treated as
a long job and its priority would increase only gradually.
So it would not be able to suspend running jobs easily
and therefore end up with a large slowdown. This does
not happen with IS because of the 10 minute time quan-
tum for each arriving job, irrespective of the estimated run
time. Therefore, the slowdowns for the very short cate-
gory (whose length is less than or equal to 10 minutes) are
lower with IS than other schemes. However, for the other
categories, SS performs much better than IS.

In Figures 5 and 6, the performance data for the various
job categories is shown separately for the well estimated
jobs and the poorly estimated jobs. It is evident that the
higher slowdowns for the VS categories in SS is due to
the poorly estimated jobs. It can also be observed that, for
the well estimated jobs, SS is comparable to IS for the VS
categories and SS outperforms IS for all other categories.

7 Modeling of Job Suspension Overhead
We have so far assumed no overhead for pre-emption of

jobs. In this section, we report on simulation results that in-
corporate overheads for job suspension. Since the job trace
did not have information about job memory requirements,
we considered the memory requirement of jobs to be ran-
dom and uniformly distributed between 100MB and 1GB.
The overhead for suspension is calculated as the time taken
to write the main memory used by the job to the disk. The
memory transfer rate that we considered is based on the
following scenario: With a commodity local disk for every
node, with each node being a quad, the transfer rate per
processor was assumed to be only 2 MBps.

Figure 7 compares the slowdowns of the proposed tun-
able scheme with NS and IS in the presence of overhead
for the suspension/restart. It can be observed that overhead
does not significantly affect the performance of the Tun-
able Suspension Scheme.

8 Conclusions
In this paper, we have explored the issue of pre-emptive

scheduling of parallel jobs, using a job trace from a su-
percomputer center. We have proposed a tunable, selec-
tive suspension scheme and demonstrated that it provides
significant improvement in the average slowdown and the
worst case slowdowns of most job categories. It was also
shown to provide better slowdown for most job categories
over a previously proposed Immediate Service scheme.
We also modeled the effect of overheads for job suspen-
sion, showing that the proposed scheme provides signifi-
cant benefits over non-preemptive scheduling and the Im-
mediate Service strategy. We also evaluated the proposed
schemes in the presence of over estimations and showed
that it produced good results.
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